金屬材料增材制造技術是基于離散—堆積原理的新型數字化成形技術,通過使用激光等熱源,將粉狀或絲狀的金屬材料熔化并逐層堆積“打印”金屬零件的制造技術[1-2]。激光金屬沉積(lasermetaldeposition,LMD)工藝是近來發展起來的一種很有前途的先進增材制造技術。該工藝過程將粉材或絲材送入激光能量源形成的熔池中,熔覆在工件表面。LMD工藝能夠制造形狀非常復雜的零部件,可用于修復在過去被認為是不可修復的或被丟棄的高價值零部件[3-5],還可用于生產復合材料和功能梯度材料制成的零件[6-7]。
鈦及鈦合金(Ti、Ti6Al4V、Ti6Al7Nb等)具有比強度高、耐熱性好、耐腐蝕、生物相容性好等特點,是醫療器械、化工設備、航天航空及運動器械等行業的理想材料[8-9]。鑒于鈦合金是典型的難加工材料,加工時的應力大且溫度高,刀具損耗嚴重,阻礙了鈦合金的廣泛應用。LMD技術非常適合用于鈦和鈦合金材料的制造,一是3D打印時,受保護的鈦不易與空氣中的元素反應,微區局部快速升溫、降溫也降低了合金元素的揮發損耗;第二,復雜形狀的制品可以在不經切割加工的情況下制成,粉材或絲材的高利用率大大降低了產品的制造成本[8-10]。
LMD工藝在金屬沉積過程中,工藝參數之間存在著高度交互作用,對性能起著重要作用。
Khodabakhshi等[11-12]基于LMD工藝研究了S316-L奧氏體和S410-L馬氏體不銹鋼的微觀組織特征、晶體織構、拉伸性能,與奧氏體和馬氏體不銹鋼軋板進行了比較,結果表明:打印的馬氏體不銹鋼的抗拉強度顯著提高,但塑性降低。Mahamood等[13-14]基于LMD工藝研究了激光功率、掃描速率、粉末流速、氣體流速對沉積過程中Ti6Al4V合金微觀組織、維氏硬度和表面光潔度的影響,優化了工藝參數,獲得了最佳的表面光潔度和更好的力學性能。
到目前為止,LMD工藝制備TC4鈦合金的報道較少,對制備工藝對打印件的微觀組織和缺陷的影響機制進行詳細探討的文獻更少。本文選用激光同軸LMD工藝制得TC4鈦合金,并探討了激光功率和掃描速率對于TC4鈦合金結構、組織形貌和維氏硬度的影響機制,以期尋找出最佳的制備工藝參數,為優質的TC4打印件的生產提供理論依據。
1、試驗材料及方法
圖1(a)為LMD工藝成型原理示意圖,主要由激光束發生系統、聚焦透鏡系統、送料和送氣系統構成,在此技術中,激光束在發出并透過聚焦透鏡系統后,加熱被送料系統送入噴頭中的金屬粉末,金屬液滴逐層熔覆在鈦合金基板上形成制件。試驗所用材料為氣霧法制備的Ti6Al4V合金球形粉材,如圖1(b)所示,粉材粒度均勻,直徑為100μm左右。采用JF-M2000R同軸打印機在氮氣保護下打印試樣。制備試樣經Kroll試劑(HF:HNO3:H2O的體積分數比為1:3:50)腐蝕后采用光學顯微鏡(optical microstructure,OM)、掃描電子顯微鏡(scanningelectronmicroscope,SEM)及其自帶能譜儀(energydispersespectroscopy,EDS)對微觀組織和元素成分進行表征。采用X射線衍射(X-raydiffractometer,XRD)分析樣品結構,采用維氏硬度計測試樣品維氏硬度,加載500gf載荷15s,每個試樣測試5個點,取平均值作為最終顯微硬度。
2、結果與討論
2.1組織與結構分析
LMD工藝制造的沉積態TC4鈦合金的三維形貌圖和XRD譜圖如圖2所示。由圖2(a)可見,沉積態TC4鈦合金樣品中,粉材垂直于掃描方向堆疊,不同熔覆層之間的界面結合處存在少量熔合不良的現象,該組織主要是柱狀晶,柱狀晶沿垂直于基板平面的方向穿透數個熔覆層生長。這是由于在激光增材制造過程中,柱狀晶首先于高溫度梯度的熔池底端形核并順著溫度梯度方向生長,該方向與堆疊方向基本相同,后一層的熔覆將重熔前層頂部,新熔池底部就是上一熔覆層柱狀晶的頂部,柱狀晶得以繼續外延生長。從圖2(b)中XRD譜圖中可以看出,沉積態TC4鈦合金以密排六方結構的α相衍射峰為主,還存在少量體心立方結構的β相衍射峰,無其他雜相衍射峰。
圖3為沉積態TC4鈦合金的SEM圖。從圖3中可以看出,沉積態TC4鈦合金的組織主要是典型的細針狀α相馬氏體[15-16],原始β相內部還發生相變析出形成亞結構,該亞結構大多為由無序的片層狀α相和晶界β相構成的魏氏組織,而魏氏組織塑性較差,這也是為什么TC4鈦合金熱處理前塑形較差的原因[16-18]。部分樣品中甚至出現少量同向α相集束組織。
圖4為沉積態TC4鈦合金的SEM圖和對應的EDS圖。由圖4可見,LMD生產的沉積態TC4鈦合金的元素主要是Ti、Al、V,其中Ti是主要成分元素,Al和V較少,未檢出其他雜質元素。Al是TC4鈦合金的α相穩定元素,能提高其相變溫度,對其在常溫和高溫下的強度和比重有顯著影響,V是合金中的β相穩定元素,發揮著穩定劑和強化劑的作用,有助于改善TC4鈦合金的延展性和塑性。較亮處的B點與較暗處的A點所含元素組成區別不大,亮處的Al含量稍高,Ti含量稍低。
2.2打印參數對組織的影響
2.2.1激光功率的影響
圖5為不同激光功率下的TC4鈦合金的OM圖。
掃描速率為700mm/min,粉盤轉速為3r/min,搭接步長為0.6mm。從圖5中可以看到,隨著激光功率的增加,TC4鈦合金的打印缺陷逐漸減少。在激光功率低于550W時(見圖5a、5b),晶粒之間存在一些孔隙和缺陷,還出現了少量的熔合不良現象。當功率增到550W及以上時,魏氏組織明顯增多,孔隙、缺陷的數量和大小明顯減少,熔合不良現象明顯減少直至消失(見圖5c)。這可能是因為粉材和基板吸收的熱量隨著激光功率的增加而增加,金屬粉末熔化更充分,熔池的溫度和尺寸增大的同時,晶粒生長時間也延長,導致晶粒尺寸和熔覆層熔池尺寸都隨著功率的增大而增大,孔隙缺陷隨著功率的增加而減少。由于沉積態TC4鈦合金組織內部結晶學取向具有差異,呈明暗更替生長的狀態,且隨著激光功率不斷增加,晶粒尺寸不斷增大[19]。
綜合比較后還發現,從圖5(c)中可以看出,在激光功率為550W時的組織較為均勻細小,主要組織是垂直于基板平面生長的柱狀晶,直徑為100~400μm,熔覆層沒有熔合不良的現象。這說明此時的熔池達到了熱穩定狀態,溫度和尺寸較為穩定,粉材能夠充分受熱熔化,晶粒也能得到充分生長。
2.2.2掃描速率的影響
圖6為不同掃描速率下的TC4鈦合金剖面的OM圖。激光功率為550W,粉盤轉速為3r/min,搭接步長為0.6mm。由圖6(a)可見,當掃描速率為400mm/min時,層間熔合不良,部分熔覆層間還出現了斷續點狀的未熔合缺陷,這是由于激光對金屬粉末作用時間過長而產生了燒損[20]。隨著掃描速率的升高,柱狀晶的寬度逐漸減小,這是因為制造過程中的溫度梯度與掃描速率相關,掃描速率較小時,溫度梯度也較小,熔池各部分形核環境近乎一致,同步形核生成形狀近似的等軸柱狀晶,溫度梯度較小也使得柱狀晶的成長速度偏慢進而造成柱狀晶相對粗大[18]。當掃描速率低于600mm/min時,單位時間內輸入了較大的熱量,單位面積熔覆的粉材也較多,從而導致熔覆層間距較大(見圖6a、圖6b)。
2.3力學性能分析
圖7為TC4鈦合金的維氏硬度壓痕照片和不同掃描速率下的平均維氏硬度。從圖7中可以看到,隨著掃描速率的增加,TC4鈦合金的維氏硬度呈現先增大后減小的趨勢。激光功率為550W,掃描速率為600mm/min時的平均維氏硬度達到了最大值409。掃描速率為700mm/min時,維氏硬度下降,是因為受到了魏氏組織和熔合不良的影響。
3、結論
(1)沉積態TC4鈦合金的物相以密排六方結構的α相為主,體心立方的β相含量較少,微觀組織主要是細針狀α相馬氏體組織。原始β相內部發生相變析出形成了亞結構,該亞結構大多是由無序的片層狀α相、晶界β相構成的魏氏組織。
(2)沉積態TC4鈦合金的微觀組織主要是柱狀晶,由于前一熔覆層頂部的重熔,柱狀晶沿垂直于基板平面的方向穿透數個熔覆層生長。
(3)隨著激光功率的增加,TC4鈦合金的晶粒尺寸不斷增大,孔隙缺陷減少。隨著掃描速率的升高,柱狀晶的寬度逐漸減小,熔覆層間距也逐漸減小,并且在掃描速率為400mm/min時,部分熔覆層間還形成了斷續點狀的未熔合缺陷。
(4)激光功率為550W、掃描速率為600mm/min、搭接步長為0.6mm時,TC4鈦合金的最高維氏硬度達到409。
參考文獻:
[ 1 ]馮曉甜. 送粉式激光增材制備 TC4 合金微觀組織及電化學腐蝕行為研究 [D]. 天津: 天津工業大學, 2019.
[ 2 ]盧秉恒, 李滌塵. 增材制造 (3D 打印) 技術發展 [J]. 機械制造與自動化, 2013, 42(4): 1–4.
[ 3 ]GRAF B, GUMENYUK A, RETHMEIER M. Laser metal deposition as repair technology for stainless steel and titanium alloys[J]. Physics Procedia, 2012, 39:376–381.
[ 4 ]WANG W, PINKERTON A J, WEE L M, et al. Component repair using laser direct metal deposition[C]//Proceedings of the 35th International MATADOR Conference. London: Springer, 2007:345–350.
[ 5 ]MAHAMOOD R M, AKINLABI E T, OWOLABI M G.Laser metal deposition process for product remanufacturing[M]//GUPTA K. Advanced Manufacturing Technologies. Cham: Springer, 2017:267–291.
[ 6 ]MAHAMOOD R M, AKINLABI E T. Effect of laser power and powder flow rate on the wear resistance behaviour of laser metal deposited TiC/Ti6Al4V composites[J].Materials Today:Proceedings,2015,2(4/5): 2679–2686.
[ 7 ]SHISHKOVSKY I, MISSEMER F, SMUROV I. Metal matrix composites with ternary intermetallic inclusions fabricated by laser direct energy deposition[J]. Composite Structures, 2017, 183: 663–670.
[ 8 ]鞏建強, 杜文強, 張璐, 等. 經 SLM 打印成型的 TC4 合金熱處理研究 [J]. 應用激光, 2020, 40(3): 404–408.
[ 9 ]周俊, 云忠, 湯曉燕, 等. 熱處理對激光選區熔融TC4 合金性能的影響 [J]. 金屬熱處理, 2018, 43(10):138–142.
[10]陳雙, 吳甲民, 史玉升. 3D 打印材料及其應用概述 [J].物理, 2018, 47(11): 715–724.
[11]KHODABAKHSHI F, FARSHIDIANFAR M H,GERLICH A P, et al. Effects of laser additive manufacturing on microstructure and crystallographic texture of austenitic and martensitic stainless steels[J].Additive Manufacturing, 2020, 31: 100915.
[12]KHODABAKHSHI F, FARSHIDIANFAR M H, GERLICH A P, et al. Microstructure, strain-rate sensitivity, work hardening, and fracture behavior of laser additive manufactured austenitic and martensitic stainless steel structures[J]. Materials Science and Engineering:A, 2019, 756: 545–561.
[13]MAHAMOOD R M, AKINLABI E T. Scanning speed and powder flow rate influence on the properties of laser metal deposition of titanium alloy[J]. International Journal of Advanced Manufacturing Technology, 2017,91(5): 2419–2426.
[14]MAHAMOOD R M. Effect of laser power and gas flow rate on properties of directed energy deposition of titanium alloy[J]. Lasers in Manufacturing and Materials Processing, 2018, 5(1): 42–52.
[15]CHEN L Y, HUANG J C, LIN C H, et al. Anisotropic response of Ti-6Al-4V alloy fabricated by 3D printing selective laser melting[J]. Materials Science and Engineering:A, 2017, 682: 389–395.
[16]GB/T 6611–2008, 鈦及鈦合金術語和金相圖譜 [S]. 北京: 中國標準出版社, 2008.
[17]文藝. 3D 打印兩相鈦合金組織特征及缺陷研究 [D].南昌: 南昌航空大學, 2016.
[18]章敏. 送粉式和送絲式的鈦合金激光增材制造特性研究 [D]. 哈爾濱: 哈爾濱工業大學, 2013.
[19]王文博. 固溶時效對激光同軸送粉增材制造 TC4 組織與性能的影響 [D]. 沈陽: 沈陽工業大學, 2019.
[20]張霜銀, 林鑫, 陳靜, 等. 工藝參數對激光快速成形TC4 鈦合金組織及成形質量的影響 [J]. 稀有金屬材料與工程, 2007, 36(10): 1839–1843.
相關鏈接